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Abstract

The Beaufort scale derived by Lindau (1995) is recommended to be used for con-
verting visual marine wind estimates especially for climate study purposes, where a
consistent conversion of entire data sets is essential. Shortcomings of earlier Beau-
fort scales can be mainly explained by the statistical method of derivation, so that a
major part of this report is dedicated to basic statistical considerations.

1 Introduction

Since more than one century marine meteorologists are searching for the definite conver-
sion of Beaufort estimates into metric wind speed. In principle, the derivation procedure
is rather clear. Using a suitable technique, Beaufort estimates have to be compared to
reliable wind measurements in their spatial and temporal vicinity. Finding a data set of
high quality marine wind measurements is, at first glance, the most crucial prerequisite
for an equivalent scale. Actually, the quality of the derived scale is indeed limited by
the reliability of the calibration data set. Kaufeld (1981) used wind measurements from
Ocean Weather Stations (OWS) in the North Atlantic. During more than one decade three
hourly (at some stations even one hourly) observations were taken continuously by pro-
fessional crews. Above that, the stations were situated in the open ocean. Therefore,
coastal influences on the Beaufort estimates which are intended to be calibrated can be
excluded. Another advantage is that the ships stayed in general at fixed positions so that
measurement errors due to the ship’s speed do not occur. The huge number of observa-
tions together with the relative high accuracy qualify the wind measurements from OWS
as an excellent calibration data set.

After the principal decision which data set should be used as reference, the concrete data
analysis follows. How to perform this final technical step is under debate since more than
hundred years. This report intends to review the discussion and to present a statistical
procedure for the correct derivation of a Beaufort equivalent scale. In conclusion a con-
crete scale is recommended. Since questions about the appropriate statistical analysis are
the most controversial part of the discussion, a detailed consideration of regression tech-
niques is necessary.
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2 Regressions

For not losing track of things, let us first consider pure linear regressions. If data pairs
from two samples X and Y are available, the correlation coefficient is defined as:
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which is equal to the covariance devided by the standard deviation of both samples. The
regression of Y on X is defined as:
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where �� and �� are denoting the means of the two calibration data sets with �� and ��
being their respective standard deviations. The above regression line enables us to predict
individual values �� for a given x; and predicting a wind speed value for a given Beaufort
estimate is just what we expect from an equivalent scale.

In order to gain a better insight of the problem, it is helpful to introduce the historically
used regression method, too (fig.2). For modern computers the regression line (2) is easy
to calculate, but in former times it was an arduous task. Therefore, the commonly applied
technique was to sort the observation pairs into classes of constant Beaufort force and to
compute the mean wind speed for each of these classes. Then, the regression line of the
wind speed on the Beaufort force could be obtained by connecting these class averages.
For the linear case, such procedure is equivalent to the modern method. Actually, it is
even more powerful since non-linear relationships are detectable, too.

As a very simple example, let us consider two thermometers �� and �� of identical type,
both providing time series of the temperature at two neighbouring sites. Because of their
same principal construction and their spatial proximity we suppose no bias between them
and expect the same variance for both time series. Let us further assume a correlation
coefficient of 0.6 between both instruments, which is caused by the small but noticable
distance between each other.

As we defined a priori the universal relationship between both thermometers, a kind of
equivalent scale is easy to determine here. If we should predict the measurements of ��
from ��, it is obvious that

�� � �� (3)

would give the optimal estimate. But surprisingly, this holds true only if the characteris-
tics of entire samples are considered. For the prediction of individual values, eq.(2) gives
the best estimate. Assuming a mean temperature of 10ÆC, to make the example as vivid as
possible, the one-sided regression of �� on �� tells us that �� � ���� (fig.1) would be the
best prediction for the second thermometer, if the first shows a temperature �� � 	
��
(and �� � ���, for cases when �� � 
��).
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Figure 1: Provided thermometer 1 shows 20Æ, the best estimate for thermometer 2 is 16Æ,
although both instruments are neighbouring and completely identical.

At this stage, two questions arise: As eq.(2) seems to be clearly in collision with our com-
mon sence, how can it be the optimal prediction for individual values? And if we could
be convinced that this is really the case, why is eq.(2) then not the appropriate basis for an
equivalent scale?

2.1 Prediction of individual values – the one-sided regressions

Let us turn to the first question. In our example, individual values can be regarded as
composition of two components. Firstly, they are at least principally equal to the mean
temperature of the spatially extended surrounding of both thermometers, because they can
be regarded as individual realisations representative for the entire area. This is the rea-
son why a prediction of one thermometer from the other is actually possible. Secondly,
the mean temperature is modified by a stochastic spatial temperature gradient leading to
slightly different values at both thermometers. Because of this variability a perfect pre-
diction is not completely possible.

According to the above described historical method (fig.2), we can obtain the regression
point by point by the following steps. Choose first a fixed value for the predictor, e.g.
�� � 	
��, sort out all temperature pairs ������� with �� � 	
��, and calculate the
mean temperature at �� for these cases. As we know already from eq.(2), the result will
be ����.

Considering now the members of the 	
��-class of �� (fig.3), we have to be aware that
these values are already modified by a random deviation from their respective spatial
mean. It is e.g. possible that a modified value of 	
�� results from a momentary spatial
mean of �
�� combined with a local anomaly of �	��. On the other hand, 	
�� may
occur when the spatial mean for that time is 		�� together with an anomaly of �	��.
Since we assume the local deviations to be random, such positive and negative anomalies
of the same amount have indeed the same probability. However, the point is that it are
not the deviations having a different probability, but the situations itself. Extreme situa-
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Figure 2: The historical method to calculate regressions: Firstly, choose a value for the
predictor, e.g. 20Æ, secondly, sort out all temperature pairs with �� � 	
� (dark grey
area), thirdly calculate the mean temperature at �� for these cases, finally, repeat the
procedure for several predictor values and connect the results graphically.

tions are of course less frequent than situations closer to the overall mean. Applied to our
example: situations with spatial means of �
�� are more frequent than those with 		��,
when the overall average is �
��. Thus, considering the origin from which measurements
of �� � 	
�� are stemming, colder spatial means are more likely than warmer, so that
���� is the average of these situations.

The measurement at �� is just another realisation of the instantaneous temperature in the
considered area. But we average over several of these values, so that �� reflects finally the
mean temperature of the selected sample, which is ����, as we have seen above, and not
	
��. Thus, for extreme values the probability is increased that they are based solely on
local events, so that they cannot be found at a neighbouring station. It is therefore wise to
predict a value closer to the overall mean.

It is obvious that the example can be generalized. Substituting the expression ’spatial
mean’ by ’true value’ and the expression ’local deviations’ by ’observation errors’, it will
become clear that it does not matter whether real spatial differences or random observa-
tion errors are responsible for the reduced correlation coefficient.

Nevertheless, regression results similar to the above discussed are tempting sometimes to
the erroneous conclusion that �� underestimates the temperature for warm, and overesti-
mates it for cold situations. Obviously, this is not true, since a selection according to ��

instead of �� would of course lead to the reversed result: considering only observation
pairs with �� � 	
��, it will be now �� which shows a mean temperature of only ����.

We have seen so far that eq.(2) is indeed the best prediction for a given individual value,
so that we can turn to the second question, why it should not be used as equivalent scale.
I will expound in the following that such one-sided regressions do not meet the require-
ments of an equivalent scale, but that an improved version of eq.(3) is better suited. Both
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Figure 3: Each actual measurement can be regarded as a composition of two components:
The spatially mean value which is representative for a broader area, plus a random de-
viation for the particular site. The buckets contain situations with a mean temperature of
18, 20, and 22Æ, respectively. When the mean temperature is 10ÆC, 18ÆC is more frequent
that 22ÆC. The actual temperature is a random deviation from the mean, that means in a
figurative sense, splashing randomly in all directions. After this splashing procedure we
examine the 20ÆC bucket, asking: where do these measurements come from? The prob-
ability to leave a bucket is the same for all buckets and for both directions, but the 18ÆC
bucket is fuller so that more ’splashs’ come from lower temperatures. That means if a
thermometer shows 20ÆC, it is more likely that the surrounding is colder than 20ÆC.

equations have their own advantages, and we have to face that an optimum equation for
all possible applications is not attainable. A decision is necessary which of the scale char-
acteristics are essential and which have a lower priority.

2.2 Requirements for equivalent scales – the orthogonal regression

Assuming that not individual values but an entire data set is converted by eq.(2), the dis-
advantages of the one-sided regression are revealed. Such theoretical data set, generated
by the application of eq.(2), will contain only that part of the variance which is explained
by the predictor.

The variance of the derived data set is:

������� �
�

	 � �

��
���

���� � ���� (4)

From eq.(2) follows,
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which is equivalent to
������� � �� ��� (6)

The loss of variance by the factor �� has serious consequences. It causes a substantial un-
derestimation of the annual cycle since the correlation between wind speed and Beaufort
force is perceptibly smaller than 1 (fig.4). Therefore, monthly means would be systemat-
ically underestimated for one half of the year (with anomally strong winds) and overes-
timated for the other half. Such performance is of course unacceptable for an equivalent
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Figure 4: Schematic figure for illustrat-
ing the reduced variance of the predicted
parameter. Crosses depict real values, cy-
cles are the prediction using the one-sided
regression of measurement 2 on measure-
ment 1. Due to the prediction, all crosses
are shifted vertically, lying finally on the
regression line. It is obvious that the vari-
ance is decreased by this procedure.

Figure 5: The mean annual cycle of the
wind speed as measured by OWS K (1).
Using the one-sided regression of wind
speed on Beaufort as conversion (2), the
annual cycle is considerably underesti-
mated. The orthogonal regression (3) fits
much better.

scale.

For illustration, we calcuted the two one-sided and the orthogonal regression between the
wind speed measurements at OWS K and the Beaufort estimates of nearby passing mer-
chant ships. The question is: Is it possible to predict the monthly wind speed at OWS K
by the Beaufort estimates of the merchant ships by using the calculated regression lines
as conversion? Figure 5 shows that the one-sided regression of wind speed on Beaufort
underestimates the annual cycle seriously, while the orthogonal regression is in better
agreement with the actual measurements at OWS K.

Another consequence is that one-sided regressions are necessarily not valid in other cli-
mates. Applying an equivalent scale in climate zones where it has not been derived is
admittedly always a delicate venture. But using one-sided regressions, it is certain that
even the longtime mean is not reproduced. If �� and �
 denote the mean deriving and the
mean applying Beaufort force, it follows directly from eq.(2) that the change in the ob-
tained mean wind ��� � �� speed will be underestimated by the factor r.
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Considering again the thermometer example, another disadvantage of one-sided regres-
sions becomes obvious. For that purpose, let us assume that one calibration attempt is
carried out in winter with a mean temperature of 
��, and a second experiment is per-
formed in summer with 	
�� as average. Leaving the other circumstances unchanged, the
winter regression will provide �� � ��� as best estimate for a given value of �� � �
��,
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Figure 6: The orthogonal regressions
between wind measurements at OWS K
and Beaufort estimates of merchant ships
in the vicinity, seperately calculated for
each month of the year.

Figure 7: As fig.6, but for the two one-
sided regressions. As equivalent value
for Beaufort 4, the July-regression (thick
line) would give 14.5 kn, but the January-
regression (thick line) 18.6 kn.

because the correlation is assumed to be 0.6. However, the summer regression will give
for the same value ��� � �
��� a best estimate of �� � ����. For individual predictions
this is reasonable. For the wintertime, a temperature of �
�� is a warm extreme, having
opposite consequences on its probability to be representative for its surrounding as it is the
case in summertime, when �
�� is a cold extreme. Nevertheless, it is hardly acceptable
that the derivation of equivalent scales leads to different results depending on the respec-
tive climate. It is not intended to deny that different wind climates might justify different
equivalent scales due to changed physical conditions. But please bear in mind that ab-
solute identical instruments were supposed in the thermometer example. Thus, obtaining
two different scales is absolutely unavoidable for purely statistical reasons. Physically
caused differences which are additionally possible would only modify this principle per-
formance.

For assessing the practical consequences wind measurements at OWS K and Beaufort es-
timates of nearby passing merchant ships are investigated. The one-sided regression of
wind speed on Beaufort, together with the reversed regression are given in fig.7. For the
conversion from Beaufort force into metric wind speed, the former ones are (if one-sided
regressions are used at all) appropriate. However, in summer, the equivalent value for
Beaufort 4, for instance, would be 14.5 kn, considerable lower than in winter with 18.6
kn. Figure 6 shows the orthogonal regressions, seperately for each month of the year. The
twelve regression lines coincide rather well, confirming that the orthogonal regressions is
well suited to reflect the common relationship between wind speed and Beaufort force.

Thus, we can summarize the following. Although one-sided regressions are well suited
to predict individual values, such a conversion cannot be recommended for entire data
sets. Using one-sided regressions as equivalent scale, the statistical characteristics of the
obtained data set will be changed substantially. The total variance will be underestimated,
which causes e.g. a too weak annual cycle of the converted wind speed. For principle
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Figure 8: Considering the thermometer example with the original data points lying in the
light area, the 1–to–1 line is be the best conversion for entire data sets. This remains
true, even if thermometer 1 is less accurate which would cause an elongation of the scat-
ter ellipse (dark grey area). Computing from this data the two one-sided regressions, it
becomes obvious that not the regular regression line, but the reversed one, where measure-
ments 2 are regarded as independent, is much better suited for a conversion. The same
effect would occur if thermometer 1 is not less accute, but if the variance is increased by
a higher temporal resolution of the measurements.

reasons, one-sided regressions are not applicable in other wind climates, where even the
obtained total mean would be uncorrect. If different scales are derived for different cli-
mates (conceivable are twelve scales, one for each month of the year) the scales will not
coincide even if Beaufort force and wind speed are actually connected by a commonly
valid relationship (for which we are searching).

Hence, our first impulse using eq.(3) as conversion scale is reasonable, because we are
not focussed on the optimal prediction of a single measurement, but on the conservation
of the statistical characteristics. Eq.(3) is of course only valid for the above considered
very simple and specific case, where equal variances and no bias were supposed. It is
condensed from the following more general expression which is known as the orthogonal
regression:

�� �
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It is easy to show that this regression conserves actually the statistical properties discussed
above. The variance of the converted data set remains unchanged, an application in other
wind climates is principally possible, and calibration data sets with different total means
will lead to the same results, provided that no real physical reasons are contradicting.
Hence, the orthogonal regression is well suited to serve as an equivalent scale.

Nevertheless, a careful assessment of the used calibration data sets, i.e wind measure-
ments and Beaufort estimates, is necessary. Both the temporal resolution and the relative
error variance are playing here an important role (fig.8). Considering again the example
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of two thermometers without any systematic difference between their measurements, an
equivalent scale giving the correct universal conversion should obviously have a slope of
1. This remains true even if we suppose one thermometer measuring more accurate than
the other. But the unequal error variances cause different total variances for both time
series so that, according to eq.(8), the slope of the orthogonal regression will not be equal
to 1. A comparable effect occurs, when the standard deviations of both data sets differ due
to the unequal resolutions of the considered time series. If one of both data sets contains
temporally averaged values, its variance will be reduced compared to the other data set
consisting of instantaneous measurements. As result, we obtain again a slope which dif-
fers from 1. In order to avoid such errors, we have to assure that the data sets used for the
calibration are of the same temporal and spatial resolution so that they contain actually a
comparable amount of natural variability. A second requirement is that their relative error
variance has to be equal.

Hence, the orthogonal regression is the most suitable statistical way to derive an equiva-
lent scale. But previously, the possible effects of different resolutions and different error
variances of both calibration data sets have to be eliminated. Now that the principle ques-
tion how to proceed is clarified, let us pass in review the numerous approaches of the last
hundred years. Their assessment will show that the progress did not always take a straight
course.

3 Historical Scales

In the 19th century the first attempts were made to assign metric wind speeds to the 13
wind strength classes of the british Admiral Beaufort. The principle procedure for this
purpose has not changed since these days. The shipborne estimates are compared with
reliable wind measurements in their temporal and spatial vicinity. The statistical analysis
of these observation pairs leads then to an equivalent scale.

At the end of the 19th century knowledge about regression techniques was just evolving,
but the ability of fast data processing was not available. Therefore, as mentioned in the
previous chapter, the usual technique was to sort the data pairs into classes of constant
Beaufort force and to compute the mean wind speed for each of these classes. Then,
the one-sided regression line of the wind speed on the Beaufort force can be obtained by
connecting these class averages. Reversing the sorting and the averaging parameter gives
the other one-sided regression of Beaufort force on wind speed. Obviously, the second
regression is suited to predict an individual Beaufort force for a given wind speed.

3.1 Köppen and Simpson

In the year 1888 a discussion began, which of the one-sided regression should be used
as equivalent scale. Based on a suggestion of Köppen, Waldo (1888) proposed to take
the regression of the Beaufort values on the measured wind velocity, i.e. to calculate the
mean Beaufort estimate for a given wind speed class and not vice versa, which was just
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in contrast to the common opinion not only in these days. Even nowadays Köppen’s ex-
celent argumentation is not always accepted, since the normally used predicting direction
is from Beaufort to wind speed.

After 1888 Köppen explained in several publications his point of view (Köppen, 1916a,
1916b, 1926). In an article of the year 1916 (Köppen, 1916a) the author emphasizes that
both one-sided regressions are not optimal. However, treating the measurements as inde-
pendent parameter would give much better results, because the used measurements were
averages over one hour, whereas the estimates were instantaneous values. Sorting the data
pairs in classes of the wind speed and averaging over the Beaufort estimates would reduce
the additional variance, which is included in the estimates due to the higher temporal res-
olution.

In London, Simpson (1906) published another Beaufort equivalent scale. Finally accepted
by the WMO in 1946 as Code 1100, this scale is commonly in use until today. It is remark-
able that Simpson proceeded in the same manner as suggested by Köppen. He averaged
the estimates for fixed wind speed classes, thus obtaining the one-sided regression from
Beaufort on wind speed. But in contrast to Köppen, Simpson considered the higher error
variance of the estimates as main reason for such a data treatment.

However, both authors were aware that the variance of the Beaufort estimates is increased,
may it be due to the higher temporal resolution or may it be due to the lower accuracy of
the estimates, so that the regression of Beaufort on wind speed is preferable.

Already in 1916, Köppen admitted the stronger plausibility of Simpsons point of view that
it were the errors which caused the higher variance of Beaufort estimates. Köppen was
conviced by the fact that Curtis (1897) found no significant differences in his results when
he calibrated the estimates against wind speed averages over only 10 minutes instead of
hourly means.

In the beginning of the last century it was commonly accepted to use the one-sided re-
gression of Beaufort on wind speed as equivalent scale. Köppen (1926) gave an overview
and pointed out again that he was well aware of the weaknesses inherent in one-sided re-
gressions, so that improvements were still necessary. But in those days the available data
sets were too small, and may be that the experience with regression techniques were not
entirely established to solve the problem definitely.

3.2 The Meteor Cruise

From 1925 to 1927, during the German Atlantic Expedition, the research vessel ’Meteor’
cruised into the South Atlantic. During this voyage the diverse problems of wind obser-
vations at sea were investigated. In this context the actual Beaufort force was hourly es-
timated by eight different observers, while the wind speed was recorded by anemometers
at several sites of the ship. From this data set Kuhlbrodt (1936) derived a new equiv-
alent scale. Quoting Köppen’s method of data analysis, he averaged over the Beaufort
estimates, thus calculating the regression of Beaufort on wind speed. Since the ’Meteor’
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touched nearly all climate zones, Kuhlbrodt computed for example a tropic and an extra-
tropic scale. In order to evaluate the quality of such scales for different climates we have
to keep in mind that Köppen’s method is a better approximation than the reverse tech-
nique. Nevertheless, also Köppen’s method leads to one-sided regression lines, which
necessarily do not coincide in different climate zones even though a universal scale may
exist. In the second chapter this problem is discussed in detail. Taking into account those
considerations, Kuhlbrodt’s attempt to derive equivalent scales for different climate zones
by one-sided regressions is very questionable.

3.3 Verploegh and Richter

In the following years many other equivalent scales were derived. Verploegh (1956) used
observations from two light ships at the Dutch coast. Three hourly Beaufort estimates
together with anemometer measurements from 7 meters height were available for the
years 1950 and 1951. After averaging the anemometer measurement over 10 minutes,
Verploegh sorted the observation pairs according to the wind speed and averaged the es-
timates. Thus, he followed Köppen’s method. However, the finally recommended scale
is based not only on Verploegh’s own calculations, but is an average of different scales.
Among others, the results of the Meteor cruise and those of Simpson (1906) were taken
into account. A scale derived by Richter (1956) was included, too. This is interesting,
because Richter was one of the first who rejected Köppen’s method, and returned to the
antiquated procedure: to calculate the mean measured wind speed for each Beaufort class.
Before merging the various scales, Verploegh discussed their differences. Richter’s and
his own scale showed considerable differences especially for low wind speeds, which he
tried to explain purely by the actually different anemometer heights. From today’s stand-
point this is only half of the story. The antiquated deriving procedure of Richter leads
unevitably to higher equivalent values for weak Beaufort classes, and to lower for the
strong Beaufort forces. The last effect is compensated by the larger anemometer height
so that only the first remains visible.

3.4 The Scientific Scale CMM-IV

In the course of the next years, the credibility of the old WMO code 1100 was more and
more declining. In 1970 the Commission for Maritime Meteorology recommended a new
scale, the CMM-IV, intended especially for scientific applications. Based on observations
from the period 1874 to 1963, a regression line between Beaufort force and metric wind
speed was calculated. But unfortunately, it was again the antiquated method which was
used for derivation. Well aware that it is important which of the parameters are regarded
as independent, the authors cited Köppen (1898) and Curtis (1987). But accidentially,
the originally correct statement was reversed. Consequently, the low Beaufort equivalents
were overestimated, while the strong ones were underestimated, and it just came true what
Köppen intended to prevent by his unorthodox deriving method.

3.5 The Kaufeld Scale

Kaufeld (1981) published a new scale based on a comparison of wind speed measure-
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ments from OWS with the Beaufort estimates of nearby passing merchant ships. The
large and extraordinary well suited raw data material, but even more the used regression
method, gave the Kaufeld scale an outstanding importance. Kaufeld pointed out that none
of the one-sided regressions is able to provide optimum results, and derived consequently
a scale based principally on the linear orthogonal regression. Since in reality non-linear re-
lationships are expected, special procedures are necessary. Kaufeld applied two concrete
techniques, the construction of the angle bisection between the two one-sided regressions
and the method of cumulative frequencies, both leading to similar results.

Kaufeld’s proceeding is in general accordance with our recommendations to use the or-
thogonal regression. But for the practical application, the relative error variances of both
data sets, the measurements and the estimates, have to be equal. Already Simpson and
Köppen supposed that this is not case, and assessed the observation errors of Beaufort
estimates to be larger than those of the measurements. Actually, this was their well-
founded reason for preferring the one-sided regression of Beaufort on wind speed to the
reversed regression, although they knew that both are not completely correct. Lindau
(1995) showed that estimation errors are indeed larger than measurement errors, at least
for measurements from OWS. After compensating these error differences, Lindau derived
a new Beaufort equivalent scale. His procedure will be reviewed in the next chapter.

4 Description of the Recommended Scale

As Kaufeld, Lindau (1995) used the measurements of OWS in the North Atlantic to cal-
ibrate the Beaufort estimates from merchant ships in their vicinity. Intending to apply
the orthogonal regression method, the observation errors of both data sets were calculated
previously.

In order to calculate the error variance of Beaufort estimates, pairs of simultaneous ship
observations are considered as a function of the distance between both ships (fig.9). With
increasing distance the mean square difference between the two wind observations in-
creases, caused by growing natural variability. As an additional component, the error
variance contributes to the total variance, but it is independent from the distance, and can
be regarded as a constant surcharge for each distance class. For the potential distance of
zero, the natural variability vanishes and only error variance remains. As pairs of ships are
considered, the double error variance appears. Repeating the analogous procedure with
pairs of merchant ships and OWS, the random observation errors of the OWS measure-
ments were concluded. It turns out that their error variance is less than half of those from
merchant ship observations.

Therefore, about six instantaneous merchant ship observations in the vicinity of the OWS
are averaged and compared to daily means of the OWS measurements consisting of only
four individual observations. In this way, the larger errors of Beaufort estimates are ex-
actly compensated. However, since co-located and instantaneous measurements are not
available, it is unavoidable that also natural variability is included by both averaging pro-
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Figure 9: Determination of the mean observation error. Mean squared wind speed dif-
ferences from VOS-OWS pairs (shaded) are compared to VOS-VOS pairs (total columns)
as a function of distance between the ships. For the potential distance zero, only errors
contribute to the variance.

cesses. For the OWS measurements, the temporal variability of one day is included, for
the Beaufort measurements an amount of spatial variability is included which depends on
the extend of the considered radius around the OWS. In order to attain comparable data
sets, extactly that spatial radius is computed which corresponds to the temporal variability
of one day. Depending on station and season, radii of about 300 to 400 km were found.
After this procedure, Beaufort estimates and wind measurements have the same accuracy
and the same resolution (in a spatial respect for the Beaufort estimates and in a temporal
respect for the OWS). Applying finally the method of cumulative frequencies, the follow-
ing scale was obtained. As the OWS measurements were previously reduced from 25m to
10m, the scale is valid for a height of 10m above sea level.

Bft 0 1 2 3 4 5 6 7 8 9 10 11 12

WMO 0.0 1.7 4.7 8.4 13.0 18.3 23.9 30.2 36.8 44.0 51.4 59.4 67.7
New 0.0 2.3 5.2 8.9 13.9 18.9 23.5 28.3 33.5 39.2 45.5 52.7 61.1
N 6 378 2287 8441 17197 11598 8870 4655 2068 597 122 15 1

Table 1: New 10m–equivalent values (in knots) compared to the WMO Code 1100. N
gives the number of data pairs, which consists of daily means for OWS measurements and
spatial means for Voluntary Observing Ships (VOS)

Kent & Taylor (1997) tested the performance of different Beaufort equivalent scales by
comparing anemometer measured wind speeds with visual estimates, both from the Com-
prehesive Ocean-Atmosphere Data Set (COADS). An extraordinary meticulous height
correction of the measurements was performed by using the individual anemometer heights
for each ship. The agreement of converted Beaufort estimates with the corresponding
measurements was checked for monthly 1Æby 1Æaverages. In conclusion, the Beaufort
scale of Lindau (1995) was found to provide the most suitable conversion for the creation
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Figure 10: Applying the Lindau scale on COADS, the turbulent fluxes at sea surface are
calculated. Together with the radiative fluxes, the net energy exchange between ocean
and atmosphere is concluded. The figure shows the northward meridional heat transport
induced by the imbalance of the obtained net energy exchange, compared to the results
of I & H: Isemer & Hasse (1987) and H & L: Hastenrath & Lamb (1978). Results of
independent oceanographic sections are indicated at the relevant latitude together with
their error bars: 30ÆS: Holfort (1994), 11ÆS: Speer & al. (1996), 0Æ: Wunsch (1984),
25ÆN: Bryden & Hall (1980).

of a homogeneous monthly mean wind data set from anemometer and visual winds in
COADS.

Lindau (2000) applied this scale to the marine meteorological reports of COADS. For the
Atlantic Ocean, the wind dependent latent and sensible heat fluxes, together with short-
wave and longwave radiation, were calculated for a 40-year period. The reliability of the
resulting total net heat flux field is estimated by comparing the hereby induced meridional
heat transport with independent oceanic measurements (fig.10). A good agreement was
achived without any additional corrections which enhances the confidence in the used
Beaufort scale.

5 Conclusions

The Beaufort scale derived by Lindau (1995) is recommended to be used for the conver-
sion of visual estimates and metric wind speed. Especially for climate study purposes, it
is essential that the characteristics of entire data sets are conserved when Beaufort esti-
mates are converted into metric wind speed. A consistent conversion is only possible with
the orthogonal regression, whereas it is the domain of one-sided regressions to give the
most probable wind speed for an individual Beaufort estimate and vice versa. However, if
one-sided regressions are used at all, Köppen (1898) and Simpson (1906) realized inde-
pendently that the regression of Beaufort on wind speed, i.e. considering the wind speed
as the independent parameter, is at least more suitable to serve as equivalent scale than the
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reversed regression. Larger errors in the estimates are the main reason, but different tem-
poral resolutions of estimates and measurements, respectively, may also contribute. For
a correct derivation of an equivalent scale both effects, those of different errors and those
of different resolutions, must be taken into account. Lindau (1995) equalized the different
errors by averaging only a small number of measurements, but a somewhat larger num-
ber of estimates. At the same time, it was ensured that the included temporal and spatial
variability was equal, too. This procedure guaranteed a correct detection of the common
relationship between Beaufort force and wind speed.
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